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Section 1

Introduction



Problem Statement

In their classic 1935 paper [3], Erdos and Szekeres proved that, for every integer k ≥ 3, there
is a minimal integer e(k), such that any set of e(k) points in the plane in general position
contains k points in convex position, that is, they are the vertices of a convex k-gon

The happy ending problem (as it is sometimes called) was one of the original results that led
to the development of Ramsey theory
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Problem Statement

Figure: All possible configurations of five points 5 / 47



Theoretical Results

• It has been proven [4] that e(k) ≥ 2k−2 + 1 and conjectured this to be sharp

• In 2016, Suk [8] reduced the upper bound to 2k+o(k)

• In 2020, Holmsen et al. [5] claims an improvement on Suk, reducing the upper bound to
2k+O(

√
k log k)
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Computational Results

• In 2006 Szekeres and Peters [9] proposed a computer solution for k = 6 (1500 hours)

• In 2017 Balko and Valtr [1] proposed a ”A SAT attack” on the conjecture

• In 2017 Maric [7] proposed a fast formal proof for k ≤ 6 (1700 sec)

• We investigate few methods to validate the conjecture for k = 7

• Using same methods for k = 6 we get a significantly lower time (80 sec)
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Section 2

Preliminaries



Preliminaries

Definition

A set S of n points in cartesian space, is in general position if no 3 points are collinear

Definition

An ordered set of three points {p1, p2, p3} ∈ S where p1 = (x1, y1), p2 = (x2, y2), p3 = (x3, y3)
forms a 3cup if the clockwise angle α formed by the base line passing thru p1 and p2 and the
segment p2, p3 satisfies: 0 < α < 180◦

Definition

An ordered set of three points {p1, p2, p3} ∈ S where p1 = (x1, y1), p2 = (x2, y2), p3 = (x3, y3)
forms a 3cap if the angle α formed by the base line passing thru p1, p2 and the segment p2, p3
satisfies: 180◦ < α < 360◦
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Preliminaries

Intuitively if p3 is on the right of the directed line passing thru p1, p2 we have a 3cup. If p3 is
in the left of the line it is a 3cap

From now on we use the term of 3c to refer to an ordered set of three points which is either a
3cup or a 3cap
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Preliminaries

Figure: Visual representation of a 3cap (above) and a 3cup (below)
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Preliminaries

Definition

A chain of size k or a k-chain is ordered set of k 3cs such that every two adjacent 3c have the
form {pi1 , pi2 , pi3} and {pi2 , pi3 , pi4}, where pik ∈ S

Definition

A cycle of size k or a k-cycle is a (k+2)-chain with the property that p1 = pk+1 and
p2 = pk+2 where {p1, p2, p3} is the first 3c of the chain and {pk , pk+1, pk+2} is the last 3c
element of the chain

Definition

A cycle is convex if all the elements are 3cap (3cup)

12 / 47



Preliminaries

Figure: Visualisation of a chain and a cycle
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Preliminaries

Definition

A set S of k points is in convex position if exists an ordering of the set S such that it forms a
convex k-cycle

Definition

Given a set S of n points in general position, we define the set S of size
(n
3

)
, as the set

containing all possible ordered (by a point associated index) sub-sets of any three points from
S along with the type: 3cup or 3cap. The set S is called 3c extension of S
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Preliminaries

Example

Let S = {(0, 0), (2, 2), (0, 2), (2, 0)}. We assign index 1 to (0, 0), 2 to (2, 2), 3 to (0, 2) and
index 4 to (2, 0). Arranging the set of 3c elements in lexicographic order we get:

S = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}

We observe that {1, 2, 3} and {2, 3, 4} are 3cap and {1, 2, 4} and {1, 3, 4} are 3cup. We
assign 0 to 3cup and 1 to 3cap and we get a simplified representation of S as:

S = {1, 0, 0, 1}
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Preliminaries

Example

For any S with |S | = 4 we have 14 possible representations (or configurations): 6 convex
configurations {(1, 1, 1, 1), (0, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1), (1, 0, 0, 1), (0, 1, 1, 0)} and 8
non-convex configurations: {(1, 0, 0, 0), (0, 1, 1, 1), . . . }
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Preliminaries

• 3c will be the primary tool in our encoding process. They will be the variables in our CNF
formula

• To have a proper geometric representation of a set S of points using 3c we need have an
axiomatic approach

• We will use CC axioms from Knuth [6]
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Preliminaries

Axiom

1. If p1p2p3 is a 3cup then p2p3p1 is a 3cup (cyclic symmetry)

2. If p1p2p3 is a 3cup then p1p3p2 is a 3cap (antisymmetry)

3. p1p2p3 is a 3c (nondegeneracy)

4. If p1p2p4, p2p3p4 and p3p1p4 are 3cups then p1p2p3 is a 3cup (interiority)

5. If p1p2p3, p1p2p4, p1p2p5, p1p3p4 and p1p4p5 are 3cups then p1p3p5 is a 3cup (dual
transitivity)

18 / 47



Section 3

SAT encoding



Boolean Satisfiability Problem

The Boolean satisfiability problem asks whether there is at least one combination of binary
input variables xi for which a Boolean logic formula returns true. When this is the case, we say
the formula is satisfiable.

A SAT solver is an algorithm for establishing satisfiability. It takes the boolean logic formula as
input and returns SAT if it finds a combination of variables that can satisfy it or UNSAT if it
can demonstrate that no such combination exists. In addition, it may sometimes return
UNKNOWN if it cannot determine whether the problem is SAT or UNSAT

20 / 47



SAT Encoding

We aim to transform our problem into a boolean logic formula and let SAT solver demonstrate
that no combination of variables exists to satisfy it. SAT Solver should return UNSAT

Our goal is to find an efficient encoding both in terms of space and time. While we do not
control how the SAT solver works, we will assume that if the sum of variables and clauses is
lower, so is the running time

21 / 47



Bad news/Good news

• Bad news: SAT problem is proven to be NP-complete and it follows that there is no
known polynomial algorithm for establishing satisfiability in the general case (except
2SAT)

• Good news: modern SAT solvers are very efficient and can often solve problems involving
hundreds of millions of variables and clauses in practice

• We will push current SAT solvers to their limits with our encoding
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First Encoding

• For each 3c we create a (boolean) variable. In total we have
(n
3

)
because we use only 1

out of 6 possible combination for any 3 points. The correct relation between the 6
combinations is enforced by the axiom encodings

• We encode the set of 5 axioms. The biggest effort is with axiom 5 because we need to
handle all

(n
5

)
× 5! cases which of course lead to the same number of clauses for our SAT

solver to handle

• We encode the non-convexity constrains. Given a k points we need to search if there is a
k-cycle on each possible configuration, which is k!. We need

(n
k

)
× k! additional clauses

• We end up with a CNF formula with
(n
3

)
variables and

(n
5

)
× 5! +

(n
k

)
× k! clauses

• For n = 33 and k = 7 we have 5454 variables and 2.15× 1010 clauses. Out of reach for
any SAT Solver (most of them are unable even to load the CNF file)
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Second Encoding

• We keep the same encoding principles but we perform rudimentary improvements

• In case of axiom 5 encoding we can reduce the number of clauses three times by removing
redundancy (heuristics, not yet a formal proof)

• For non-convexity constrains we can reduce the number of of clauses for a set of k points
by k because we eliminate all rotations of a permutation, hence we need

(n
k

)
× (k − 1)!

• For n = 33 and k = 7 we have 5454 variables and 2.15× 109 clauses. Not enough!
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Sparsifying axiom 5

Property

For any set S of n points, axiom 5 cases can be reduced by a factor of 3

Proof.

Proof sketch: If p1p2p3, p1p2p4, p1p2p5, p1p3p4, p1p4p5 and p1p3p5 are 3cups then there is
at least another configuration bounded by p3p4 and/or p3p5 to satisfy axiom 5 conditions

This property holds for (n, k) = (9, 5) and (n, k) = (17, 6). It seems to hold for
(n, k) = (33, 7). We can look at this relaxed axiom as a more general case of the problem and
if it proves to be UNSAT then our more restricted case is also UNSAT
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Third Encoding

• We want to create an order relation on S . It will help reduce the number of clauses and
the number of variables (by assign them a predefined value)
• One method (not particularly efficient) is to use a sliding line as follows:

1. starting from the left we slide a vertical line until intersects a point from S
2. we assign the index 0 to that point
3. next we clockwise rotate the line using 0 point as pivot
4. while rotating the line we intersect points from S and we assign them an index in increasing

consecutive order (e.g 1, 2, . . . |S | − 1)

• After this procedure we end up with an ordered set S and few interesting properties
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Third Encoding

Property

Every 3c of the form 0pipi+k where i > 0 and k > i is a 3cup

Proof.

Since there is no other point on the left of vertical line passing thru 0 then all points are on
the right (under) the line passing thru 0 and 1, meaning that all 3c of the form 01p are 3cup.
For all 0ij , j > i we reason in a similar manner
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Third Encoding

Property

Given k points, checking for k-cycle requires 2k−1 verification steps (or clauses)

Proof.

Assume we have a k-cycle. Our sliding line with 0 as pivot will intersect at some moment a
point form out k-cycle. Because we assign an index in increasing order to every point it means
that this point has the lowest index in our k-cycle. Next points from our k-cycle will
intersected by our line at some moment and they will receive a greater index. The next point
intersected could be geometrically in two places: on the left (clockwise) of our first point or on
the right. Hence 2k−1 possible configurations
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Third Encoding

• Using this new encoding we now have (n − 2)(n − 1)/2 assigned variables

• Axiom 5 clauses remains the same as in previous encoding

• For non-convexity constrains we reduced the number of clauses to
(n
k

)
× 2k−1

• For n = 33 and k = 7 we have 4960 variables and 1.46× 108 clauses.

• Resulting CNF formula has apx. 6GB, can be generated reasonably fast (apx. 3 min) and
loaded by any performant SAT solver on an average system

• Now we have the tools to run more experiments, faster
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Third Encoding

We can implement and test different orderings on our set S . One particular variation provided
good results (as time):

1. starting from the left we slide a vertical line until intersects a point from S

2. we assign the index 0 to that point

3. we rotate clockwise the line using 0 point as pivot until we intersect a point which will be
assigned 1

4. next we rotate counter-clockwise using 1 as a pivot until we intersect a point

5. we repeat the last two steps until all points of S are indexed
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Third Encoding

• While possible to run a SAT solver on a n = 33 encoding, after running for few months,
the SAT solver seems to have been exhausted all tricks and optimisations (stuck in 0
eliminated clauses and 0 variable removed)

• This is because all this CNF encoding are highly symmetrical (all variables appear in the
same number and type of clauses)

• This means(?) that SAT solver is doing brute-force search on the remained combinatorial
space

• We do not know how large this space is so it is safe to assume it is large

• A stronger encoding is needed, with fewer clauses and more assigned variables
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Fourth Encoding

• All selected encodings had the property of being realistically implementable, testable for
n = 33

• We have avoided costly constructions and conditions (e.g. AtMostK, AtLeastK). Only,
AtLeastOne or All constraints were allowed

• Generating CNF files was done using python+pysat and nim

• Kissat SAT solver [2] was mostly used as it is the fastest and has the most added
heuristics on top of classic CDCL algorithm

• Parallel SAT solvers were used without efficient output

• Note: it is time for a truly parallel SAT solver, but CDCL approach must be dropped (e.g.
1-bit transformers)
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Fourth Encoding

• To further reduce the number of clauses we focus on non-convexity constraints and we try
to generalize the concept of 3c by moving one dimension up to 4c, to 4-gons more
precisely

• To increase the number of assigned variables but more importantly to distribute the
assignments more widely (in previous encodings assigned variables where all 3c starting
with 0) we devise another ordering method that will split our problem in sub-problems

• Next two properties facilitates this approach
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Fourth Encoding

Property

All 4-gons of a convex n-gon (n ≥ 4) are convex

Proof.

By assuming there is at least one non-convex 4-gon it follows that the n-gon is non-convex
which is a contradiction
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Fourth Encoding

Property

Every set S of n points can be written as an union of sub-set where every sub-set is a convex
l-gon (l ≤ k)

Proof.

We construct our sub-sets as follows: Start with a vertical line on the left-most of the
cartesian plane. We move it to the right until we intersect a point. Next, using that point as
pivot we rotate the line clockwise until we intersect with another point. The last intersected
point becomes the pivot. We continue this process until we intersect the initial point. At this
moment we have a l-gon. We remove l-gon points from S and we start the process again, until
we eliminated all the points.
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Fourth Encoding

Definition

The union of convex l-gons L1, L2, . . . , Lr is called a configuration and is denoted
|L1|, |L2|, . . . , |Lr |

Example

If we have a set S of 9 points and the first/outer convex polygon is a triangle, the second one
is a triangle and the third one is also a triangle then the configuration of S is 3, 3, 3
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Fourth Encoding

• Again, we start our encoding with 3c variables and axiom clauses

• We add a 14 new variables for each 4-gon which are set in accordance with the
configuration of the 4-gon (see example with S)

• If any of last 8 variables is true then the 4-gon is convex

• Then we add a simple if AllLeastOneTrue clause for any k-gon and this will ensure
non-convexity constrain

• In total we add (6 + 1)
(n
4

)
new variables and ((14 ∗ 5 + 1) + 1)

(n
k

)
clauses to our CNF
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Fourth Encoding

• Regarding the ordering of points of S , based on previous property we transform S into a
union of l-gons, l < k

• We assign an index in increasing order to every point of the outer l-gon, then we continue
with the next ones based on inclusion order

• Now we can assign true value to any 3c(variable) of the form pi1pi2pi3 , where pi1 and pi2
are adjacent vertices of a l-gon and pi3 is any point inside the l-gon

• For (n, k) = (33, 7) we assign 661 variables, compared to 496 when using the sliding
method

• The main benefit here is that we spread the assignments into the whole structure of S
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Fourth Encoding

• For 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 configuration of S , we end up with 578336 variables and
16671965 clauses

• For 6, 6, 6, 3, 6, 6 configuration, we have have 16671435 clauses

• Compared with previous encodings (109, 108 clauses), we now have 107 clauses

• Regarding variables we now have quite a big number. However active variables are the
same

• The worst part is that for n = 33 we can have 3.1× 104 possible configurations

• Axiom 5 clauses make up more than half of the total clauses
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Section 4

Results



(n, k) = (17, 6)

• Using sliding ordering and 4-gon non-convexity constraints we find UNSAT in apx. 80 sec
on an average system

• Using sliding ordering and regular non-convexity constraints we find UNSAT in apx. 200
sec on an average system

• Using convex union ordering and 4-gon non-convexity constraints we find UNSAT in apx.
5 sec on an average system for 3, 3, 3, 3, 3 configuration

• Using convex union ordering and 4-gon non-convexity constraints we find UNSAT in apx.
1 sec on an average system for 5, 6, 4 configuration

• We have 96 different configurations
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(n, k) = (33, 7)

• Using sliding ordering and 4-gon non-convexity constraints solver is still running after
many months

• Using sliding ordering and regular non-convexity constraints is still running

• Using convex union ordering and 4-gon non-convexity constraints we find UNSAT in apx.
2 days on an average system for (example) 6, 6, 6, 3, 6, 6 configuration

• Using convex union ordering and 4-gon non-convexity constraints we find UNSAT in apx.
7 days on an average system for 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 configuration

• Over 40 configurations have been tested

• We have 31422 different configurations

• e(7) = 33 is now tangible!
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(n, k) = (33, 7)

• Testing one configuration requires a SAT solver instance that uses 1 thread and apx 5GB
of memory

• Over 10 instances can be executed simultaneously on a regular system (starting time
should be deferred)

• Using 1000 systems or cloud instances that run only 1 solver instance for 4 days, e(7) can
be closed in 4 month
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Next steps

• Reducing axiom 5 clauses will reduce average time per instance

• No intention to continue further unless FMI is seeing a benefit

• After 5-10 years if no advance is done, we retest using up to date hardware

• A new approach, highly parallel SAT Solver?

• Ramsey(5, 5) :)
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